Free Quick Notes books provide help for accounting, economics, statistics, and basic mathematics.

Inferential Statistics Formula Review

- Large sample hypothesis testing ($n \ge 30$) ١.
 - A. One sample mean
 - 1. One-tail testing determines if a mean is different than a given value in a particular direction.
 - 2. Two-tail testing determines if a mean is different than a given value in either direction. Divide α by 2.
 - 3. The test statistic is \overline{x} .

$$z = \frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}$$

- B. Two sample means
 - 1. One-tail testing determines if one mean is larger or smaller than another.
 - 2. Two-tail testing determines if 2 means are equal. Divide α by 2.
 - 3. The test statistic is \bar{x} .

$$Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- C. One sample proportion
 - 1. One-tail testing determines if a proportion is different than a given value in a particular direction.
 - 2. Two-tail testing determines if a proportion is different than a given value in either direction. Divide α by 2.
 - The test statistic is p.

$$Z = \frac{\overline{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

- D. Two sample proportions
 - 1. One-tail testing determines if one proportion is larger or smaller than another.
 - 2. Two-tail testing determines if 2 proportions are equal. Divide α by 2.
 - 3. The test statistic is p. p

$$=\frac{x}{n}$$

$$= \frac{\overline{p}_1 - \overline{p}_2}{\sqrt{\frac{\overline{p}w(1 - \overline{p}w)}{n_1} + \frac{\overline{p}w(1 - \overline{p}w)}{n_2}}}$$

- II. Small sample hypothesis testing (n < 30)
 - A. One sample mean
 - 1. One-tail testing determines if a mean is different from a given value in a particular direction.
 - 2. Two-tail testing determines if a mean is different from a given value in either direction. Dividing α by 2.
 - 3. The test statistic is \overline{x} .

$$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$$
 and $df = n - 1$

- B. Two sample means from independent populations
 - 1. One-tail testing determines if one mean is larger or smaller than another.
 - 2. Two-tail testing determines if 2 means are equal. Divide α by 2.
 - 3. The test statistic is \overline{x} .

Software Tutorial Internet Library has material to help with many popular software programs.

$$H_0: \mu = x$$
 and $H_1: \mu \neq x$

 $H_0: \mu \leq x$ and $H_1: \mu > x$

Statistics Tutors

X is the hypothesized population mean.

 $H_0: \mu_1 \ge \mu_2$ and $H_1: \mu_1 < \mu_2$ $H_0: \mu_1 \le \mu_2$ and $H_1: \mu_1 > \mu_2$ $H_0: \mu_1 = \mu_2$ and $H_1: \mu_1 \neq \mu_2$

 $H_0: p \ge x$ and $H_1: p < x$ $H_0: p \leq x \text{ and } H_1: p > x$ $H_0: p = x$ and $H_1: p \neq x$

P is the hypothesized population proportion.

Gjjj

and
$$\bar{p}_w = \frac{\text{Total successes}}{\text{Total sampled}} = \frac{x_1 + x_2}{n_1 + n_2}$$

Free Business Textbooks is a library covering many business subjects.

Excel Internet Library has learning materials classified by type of user.

Business Book Mall has material to enhance your career.

MBA Internet Library will help with acceptance, graduation, and career advancement.

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{S_w^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \text{ and } s_w^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \text{ and } df = n_1 + n_2 - 2$$

Free Non-business Textbooks Library covers many subjects.

136

Can help with
difficult assignments
$$H_0: \mu \ge x$$
 and $H_1: \mu < x$

Z =

- C. Two sample means from dependent populations (paired difference test)
 - 1. One- and two-tail problems may be analyzed.
 - 2. The test statistic is d.

$$t = \frac{\overline{d}}{\frac{s_d}{\sqrt{n}}}$$
 and $s_d = \sqrt{\frac{\sum d^2 - \frac{(\sum d)^2}{n}}{n-1}}$ and $\overline{d} = \frac{\sum d}{n}$ and $df = n - 1$

- 3. $H_0: \mu_d \ge 0$ and $H_1: \mu_d < 0$ Note: μ_d is negative when H_1 involves testing for an increase.
- III. Statistical quality control A. The \bar{x} chart B. The R chart C. The p chart
- IV. Analysis of variance
 - A. Testing 2 sample variances from normal populations
 - 1. One- and two-tail problems may be analyzed.
 - 2. The test statistic is F.

 $F = \frac{s_1^2}{s_2^2}$ df = n - 1 for both the numerator and the denominator Two-tail test requires dividing the level of significance by 2.

- B. Analyzing 3 or more sample means from normally distributed populations (ANOVA)
 - 1. Equality of the means will be tested. $H_0: \mu_1 = \mu_2 = \mu_3$ and $H_1: \mu_1 \neq \mu_2 \neq \mu_3$
 - 2. The test statistic is F. $F = \frac{MS_T}{MS_T}$
 - This is a one-tail test.
- C. Two-factor variance analysis
 - 1. Equality of 3 or more means will be tested for both a treatment variable and a blocking variable.
 - $F = \frac{MS_T}{MS_E}$ and $F = \frac{MS_B}{MS_E}$ 2. The test statistic is F.
 - 3. This is a one-tail test.
- D. Comparing three or more treatment means to each other
 - 1. Having rejected the null hypothesis when comparing the means of three or more populations, treatment means can then be compared (2 at a time) to determine individual differences.
 - 2. The test statistic is the range for the difference between the treatments. $(\bar{x}_3 - \bar{x}_1) \pm t \sqrt{MS_E(\frac{1}{D_1} + \frac{1}{D_2})}$ If the range includes 0, conclude there is not a difference.
 - This is a two-tail test.
- V. Nonparametric hypothesis testing
 - A. Goodness of fit tests for expected frequency of one categorical variable
 - 1. Do expected frequencies (equal or proportional) match the observed frequency?
 - 2. The test statistic is chi-square. Fre 1.27 χ

$$L^2 = \sum \left[\frac{(r_0 - r_e)^-}{f_e} \right]$$
 and $f_e \ge 5$ and $df = k - 1$

- B. Measuring independence of two categorical variables with a contingency table test
 - 1. Are two variables dependent? 2. The test statistic is chi-square. $\chi^2 = \sum \left[\frac{(f_o f_e)^2}{f_e} \right]$ and $f_e = \frac{f_r \times f_c}{n}$ $f_o \ge 5$, and df = (r 1)(c 1)
- C. The run test for determining randomness based upon order of occurrence

$$Z = \frac{r - \mu_r}{\sigma_r} \text{ where r is the number of runs, } \mu_r = \frac{2n_1n_2}{n_1 + n_2} + 1 \text{ and } \sigma_r = \sqrt{\frac{2n_1n_2(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_1 + n_2 - 1)}}$$

- D. One- and two-tail testing of one sample median using a sign test.
- E. One- and two-tail testing of 2 medians from independent populations using the Mann-Whitney test.

$$z = \frac{U - \mu_U}{\sigma_U}$$
 where $U_1 = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - R_1$ and $\mu_U = \frac{n_1 n_2}{2}$ and $\sigma_U = \sqrt{\frac{n_1 n_2(n_1 + n_2 + 1)}{12}}$

- F. One- and two-tail testing of 2 medians from dependent populations using the paired difference sign test.
- G. The Kruskal-Wallis test for the equality of 3 or more independent sample medians

$$H = \frac{12}{N(N+1)} \left[\frac{(\sum R_1)^2}{n_1} + \frac{(\sum R_2)^2}{n_2} + \dots + \frac{(\sum R_k)^2}{n_k} \right] - 3(N+1)$$