Probability Formula Review

I. Types and characteristics of probability

A. Types of probability
1. Classical: \(P(A) = \frac{A}{N} \)
2. Empirical: \(P(A) = \frac{A}{n} \)
3. Subjective: Use empirical formula assuming past data of similar events is appropriate.

B. Probability characteristics
1. Range for probability: \(0 \leq P(A) \leq 1 \)
2. Value of complements: \(P(\bar{A}) = 1 - P(A) \)

II. Probability rules

A. Addition is used to find the sum or union of 2 events.
1. General rule: \(P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \)
2. Special rule: \(P(A \text{ or } B) = P(A) + P(B) \) is used when events are mutually exclusive.

B. Multiplication is used to determine joint probability or the intersection of 2 events.
1. General rule: \(P(A \text{ and } B) = P(A) \times P(B \mid A) \)
2. Special rule: \(P(A \text{ and } B) = P(A) \times P(B) \) is used when the events are independent.

Note: For independent events, the joint probability is the product of the marginal probabilities.

C. Bayes' theorem is used to find conditional probability.
\[
P(A \mid B) = \frac{P(A) \times P(B \mid A)}{P(A) \times P(B \mid A) + P(\bar{A}) \times P(B \mid \bar{A})}
\]

Note: The denominator is when condition \(B \) happens. It happens with \(A \) and with \(\bar{A} \).

III. Counting rules

A. The counting rule of multiple events: If one event can happen \(M \) ways and a second event can happen \(N \) ways, then the two events can happen \(M \times N \) ways. For 3 events, use \(M \times N \times O \).

B. Factorial rule for arranging all of the items of one event: \(N \) items can be arranged in \(N! \) ways.

C. Permutation rule for arranging some of the items of one event:
(order is important: a, b, c and c, a, b are different)
\[
N^P_R = \frac{N!}{(N-R)!}
\]

D. Combination rule for choosing some of the items of one event:
(order is not important: abc and cba are the same and are not counted twice)
\[
N^C_R = \frac{N!}{(N-R)! \times R!}
\]

IV. Discrete probability distributions

A. Probability distributions
1. \(P(x) = [x \times P(x)] \) is calculated for each value of \(x \).
2. Mean of a probability distribution: \(\mu = E(x) = \Sigma [x \times P(x)] \)
3. Variance of a probability distribution: \(V(x) = [\Sigma x^2 \times P(x)] - [E(x)]^2 \)

B. Binomial distributions
\[
P(x) = \frac{n!}{x!(n-x)!} p^x q^{n-x}
\]
where
\(n \) is number of trials \(x \) is number of successes
\(p \) is probability of success \(q \), the probability of failure, is \(1 - p \)
\(\mu = np, \sigma^2 = npq \) and \(\sigma = \sqrt{npq} \)

C. Poisson distributions
\[
P(x) = \frac{e^{-\mu} \mu^x}{x!}
\]
where \(\mu = np \) Poisson approximation of the binomial requires \(n \geq 30 \) and \(np < 5 \) or \(nq < 5 \).
V. The continuous normal probability distribution

A. To find the probability of x being within a given range:
 $$Z = \frac{x-\mu}{\sigma}$$
 Normal approximation of the binomial requires $n \geq 30$ and both np and nq are ≥ 5. The continuity correction factor applies.

B. To find a range for x given the probability: $\mu \pm Z\sigma$

VI. Central limit theorem

[Diagram showing sampling distribution of the means]

If $n \geq 30$, the population may be skewed.

VII. Point estimates

A. \bar{x} for μ
B. s for σ
C. \bar{p} for p
D. $s_{\bar{x}}$ for $\sigma_{\bar{x}}$ where $s_{\bar{x}} = \frac{s}{\sqrt{n}}$ and $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

VIII. Interval estimates when $n \geq 30$

A. For a population mean $\bar{x} \pm Z\frac{\sigma}{\sqrt{n}}$ or $\bar{x} \pm Z\frac{s}{\sqrt{n}}$

B. For a population proportion $\bar{p} \pm Z\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$ where $\bar{p} = \frac{x}{n}$

IX. Determining sample size

A. When estimating the population mean $n = \left(\frac{Z_\alpha E}{E}\right)^2$

B. When estimating the population proportion $n = \frac{\bar{p}(1-\bar{p})}{\left(\frac{Z_\alpha}{E}\right)^2}$

[Note: Use the finite correction factor in section VIII formulas when $n/N \geq .05$. $n = \frac{N-n}{N-1}$]

Section VIII Note: When $n < 30$ and σ is unknown, the t distribution, to be discussed in chapter 16, must be substituted for the z distribution when making interval estimates. Many statistics software programs do all interval calculations, regardless of sample size, using the t distribution.