Quick Questions 9 Discrete Probability Distributions

I. Place the letter of the appropriate definition or formula next to the concept or value it defines.

Poisson distribution formula	A. 1- P(S)	
2. 0! =	B. $\Sigma[x \bullet P(x)]$	
3. P(F) = (F is failure)	C. $[\Sigma x^2 \cdot P(x)] - [E(x)]^2$	
4. Binomial distribution	D. x	
5. x ⁰ =	$E. P(x) = \frac{n!}{X!(n-x)!} p^x q^{n-x}$	
6. E(x) = µ =	F. Requires np or nq be less than 5	
7. x ¹ =	G. np	
8. V(x) = σ =	H. 1	
9. Poisson approximation of the binomial	$P(x) = \frac{\mu^x e^{-\mu}}{x!}$	
10. Mean of a Poisson distribution	J. 1	

Note: The mean, variance, and standard deviation for a binomial distribution equal np, npq, and \sqrt{npq} respectively.

II. The sales manager of the XYZ Company made the following estimates of next year's sales.

Sales (millions of \$)	P(x)	
4	0.2	
5	0.4	
	0.4	
	1.0	

A. What are expected sales for next year?