- IX. Three computer component assembly methods were compared by Insel Corporation. Employee efficiency was based upon production time and product quality.
 - A. Use ANOVA analysis to test at the .05 level of significance whether mean employee efficiency of these assembly methods are equal.

		ANC	VA Analy	sis of A	ssembly N	lethods	
Employee Efficiency Ratings for 3 Treatments (T)						Row Totals Required	
	Method 1		Method 2		Method 3		for Calculations
	Score X ₁	X_{1}^{2}	Score X ₂	X_2^2	Score X ₃	X_3^2	
	4	16	6	36	8	64	
	6	36	7	49	8	64	
	7	49	4	16	9	81	
	7	<u>49</u>	Z	49	9	81	
$\sum X_T$	24		24		34		$\Sigma x = 82$
$(\Sigma x_T)^2$	576		576		1156		
n	4		4		4		N = 12
$\frac{(\sum X_T)^2}{\sum X_T^2}$	144		144		289		$\sum \left[\frac{(\sum X_T)^2}{n}\right] = 577$
Σx_T^2		150	17	150		290	$\sum x^2 = 590$

- 1. $H_0: \mu_1 = \mu_2 = \mu_3$ $H_1: \mu_1 \neq \mu_2 \neq \mu_3$
- 2. F is the test statistic and $\alpha = .05$.
- If F from the test statistic is beyond the critical value of F, the null hypothesis will be rejected.
- 4. df = t 1 = 3 1 = 2 df = N - t = 12 - 3 = 9 f for .05 level of significance is 4.26.
- 5. Apply the decision rule.

$$F = \frac{MS_T}{MS_E} = \frac{8.335}{1.44} = 5.79$$

Reject H_o because 5.79 > 4.26. Training methods had different means.

$$\bar{X}_1 = \frac{\sum x}{n_1} = \frac{24}{4} = 6.0$$

$$\bar{X}_3 = \frac{\sum x}{n_3} = \frac{34}{4} = 8.5$$

The t for $\alpha/2$ and N - t degrees of freedom (12 - 3 = 9) is 3.25.

$$SS_T = \sum \left[\frac{(\sum x_T)^2}{n} \right] - \frac{(\sum X)^2}{N}$$

$$= 577 - \frac{82^2}{12}$$

$$= 16.67$$

$$MS_T = \frac{SS_T}{t-1} = \frac{16.67}{3-1} = 8.335$$

$$SS_E = \sum x^2 - \sum \left[\frac{(\sum x_T)^2}{n} \right]$$
= 590 - 577
= 13.00
$$MS_E = \frac{SS_E}{N-t} = \frac{13}{12-3} = 1.44$$

$$SS_{TOTAL} = \sum x^2 - \frac{(\sum x)^2}{N} = 590 - 560.33 = 29.67$$

$$(\bar{x}_1 - \bar{x}_3) \pm t \sqrt{MS_E(\frac{1}{n_1} + \frac{1}{n_2})}$$

$$(8.5 - 6.0) \pm 3.25 \sqrt{1.44(\frac{1}{4} + \frac{1}{4})}$$

$$2.5 \pm 2.758$$

This range indicates the difference between these means could be zero.