VI. Answer the following questions using the data on the preceding page.

A. Use the method of least squares to determine a regression equation.

\[b = \frac{n(\sum XY) - (\sum X)(\sum Y)}{n(\sum X^2) - (\sum X)^2} = \frac{1.210}{185} = 6.5405405 \]

\[a = \bar{Y} - b\bar{X} = \frac{310}{6} - 6.5405405(\frac{35}{6}) = 13.513515 \]

\[\hat{y}_x = a + bx \]

\[\hat{y}_x = 13.5 + 6.54x \]

When using a regression equation, values for x should be limited to the actual data range. Here, 3 to 10.

B. Calculate the estimated profit for next year when R & D will be $8,000,000.

\[\hat{y}_x = 13.5 + 6.54x \]

\[\hat{y}_8 = 13.5 + 6.54(8) = 13.5 + 52.32 = 65.82 \text{ million} \]

C. Draw the regression line on the page 160 scatter diagram.

Two points (x,y) may be used to draw a straight line. Here, 8 and 65.82 from question B, and the y-intercept (0,13.5) are used.

D. Calculate the 99% confidence interval for question B.

\[S_{y,x} = \sqrt{\frac{\sum Y^2 - a(\sum Y) - b(\sum XY)}{n-2}} = \sqrt{\frac{17,700 - 13.513515(310) - (6.5405405)(2,010)}{6-2}} = 9.54 \]

\[df = 6 - 2 = 4 \]

\[\alpha/2 = .01/2 = .005 \rightarrow t = 4.604 \]

\[\bar{x} = \frac{\sum x}{n} = \frac{35}{6} = 5.83 \]

\[\hat{y}_x \pm ts_{y,x} \sqrt{\frac{1}{n} + \frac{(x-x)^2}{\sum x^2 - (\sum x)^2}} \]

\[\hat{y}_8 = 65.82 \pm 4.604(9.54) \sqrt{\frac{1}{6} + \frac{(8-5.83333)^2}{235 - (35)^2/6}} \]

\[= 65.82 \pm 50.44 \]

15.38 \leftrightarrow 116.26

E. What procedure should be followed if the range for the answer to question D includes zero or a negative number?

If the range expresses the possibility of a negative number, the confidence level may be lowered with a larger sample. This happens because a larger sample lowers t. Here, if only 3 million dollars is invested in R & D, the average value y is only 13.5 + 6.54(3) = 33.12. For the 99% confidence level, acceptable error is approximately 52.47 (calculations for this number are not shown). This means profit could be negative (33.12 - 52.47). However, because profits can be negative, a larger sample is not required. But, this range is very large and may not be useful.